
DOCUMENT RESUME

ED 077 246

AUTHOR Ka PloW, Roy; And Others
TITLE TICS: A System For The Authoring and Delivery Of

Interactive Instructional Programs.
INSTITUTION Massachusettt inst. of Tech., Cambridge. Dept. of

Metallurgy and Materials Science.
SPONS AGENCY National Science FoundatiCni Washington, D.C. Office

of Computing Activities.
PUB DATE Mars 73
NOTE' 5p.; Proceedings, Seventh Annual Princeton Conference

on Information Sciences and Systems, March 22-23,
1973

EM 011.174

EDRS.Pket MF-$0.65 HC-$3.29
DESCRIPTORS AuthOrs; :*CoMputer Astisted Instruction;

-*Institictional PrograMs; *Interaction; Man Machine
SytteMt;-- On- Line 'SysteiS; Program Detdriptibnt;-
*PrOgrath Development ;_ programing, LanqUages

IDENTIFIERS *Teadher InteractiVe =Computer System;_ TICS

ABSTRACT
The Teacher Interactive. Computer, ,SysteM (TICS) is anon-line and interactive programing system for authoring interactive

progrant, :particularly instructional programs. The system provides a
fairly, Aatlikal langtiage, in which the author's statements for

items in a program, for examining_ the structure and flow,
for siirulating its use by students, for Mcdifying the existing
xlesCrIPtiOri,' and for making, entries in a thesautustentyClOpedia can
be iriteriixed hemogeneoutly: During the authoring process, the
current ,tpecification of the program is stored dynamically as astructured= data base, Which intludes autocratically generated
information relating to the interdependencies among items in the
program= and other diagiottically useful data. _Implemented in a large,
general=pUrpose time - sharing system (Multics) , the TICS authoring
sySteat is coMplemented by a delivery system for student Use of the
program. :It is alto intended to provide automatic conversion of
completed programs to alternate formats for implementation on other
CoMputert..(Author/PB)

Proceedings, Seventh Annual Princeton Conference on Information Sciences and
Systems, March 22-23, 1973

TICS: A SYSTEM FOR THE AUTHORING AND DELIVERY OF
INTERACTIVE INSTRUCTIONAL PROGRAMS

by

Roy Kaplow*, David S. Schneidert, Franklin C. Smith, Jr.*
and-William R. Stensrud*

Department of-Metallurgy and Materials Science
Massathusetts,Institute of TeChnology

Cambridge, MassachUtetts 02139

Summary

TICSITeaCher-InteractiVe Computer System) is
an-__on-line and interactive programming system -for
authoring Programs, partitularly in=
structional,progtars of various typei. The system
provides-A.-fairly natural language, in- which -the
authoes.itatementt for dreating:iteMt in a pro
gram, forexaMining the structure and-floW,- fot
simulating its use by_students, for- modifyihg_the
existing:ditcription, and-for Making entrieS io,a
"thesadrut/enCyclopeaid" can be intermixed homoge-
neously-. During the authoring process, the Current
sPecification of a program is stored dynamically
as a structured data base, which includes automat-
ically,gederated information relating to the-inter-
dependencies among items in the prograM and other
diagnostiCally useful data. Implemented in a large,
general_ purpose titre - snaring system (Multics), the

TICS authoring system is complement:2d by a delivery
system for student use of the programs. It is also
intended AD Provide automatic conversion of com-
pletedrOgrams to alternate formats for implemen-
tation on other computers.

Introduction

In this paper, we destribe an interactive
programing -- system: TICS (for Teacher-Interactive
Computerlystem) in terms of its application to
the authoring and-use of computerized instructional
programs, Which we call 'Tutorials. This system,
more than other programming languages and systems
which have been applied to similar purposes,1-4
treats the authoring of a Tutorial as a dynamic
process which-itself requires significant computer-
ized assistance.

We regard Tutorial programs as defining an
interaction which is primarily controlled by the
computer (that is, by the author) but with the stu-
dent being able to direct the flow either implicit-
ly by his- responses, or explicitly by direct re-
quests. During that interaction an attempt may be
made to stimulate the student by offering informa-
tion, asking questions, anj soliciting responses;
the computer should also be able to respond to the
student's questions, even if within a limited
framework. A particular student will see a

Professor anu staff members, respectively,
Department of Metallurgy ane Materials Science.

Graduate stuuent, Department of Electrical
Engineering.

U S DEPARTMENT OF WEALTH.
EDUCATION &WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN ..REPRO
DUCED EXACTLY AS RECEIVED FROM
THE ',ORSON OR ORGANIZATION ORIGIN
ATING IT. POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

sequence-Of such actions;-with the detail of the
content_varying in a manner which depends nn his
iMMediately_-,-preceding responte, previous responses,
and_other-parameters-.

Inswriting-a:Tutorial, theauthois con=
cerned with a-multt=dimentional objedt, for-which
he needt to donsider'both-theoVeralidesign and
spetifid-details-at different-points=-Often-at
essentially the-saMe-MoMent: The notion that he
might,Write the program by presenting a one- dimen-
sional sequedtial list of "instructions" starting
at one end Of the object and going to the other,
is not accurate, even though that view is-so fund-
amental an aspect of most programming languages
that non-professionals often identify it as the
process_of ptoaramming a computer. TICS, 'on the
other hand, assumes that the author will move
around within the ongoing_ description of his
Tutorial. It also recognizes that the acts of
describing items in the Tutorial,_ of examining,the
Tutorial, of trying it to see how it works, of
changing it or adding to it on the basis of look-
ing at it (in the general sense), and even of in
serting -data into an information data base for the
student are all intimately related aspects of the
one dynamic process of writing a Tutorial. There-
fore, the TICS commands which relate to all of
those different kinds of activity are-available
to the author at any time, regardless of the then
current state of his program, and the various
typet of actions may be mixed in a natural way,
according to his own predilection. Many of the
available instructions are analogous to program-
ming language statements, in that they specify ac-
tions which are to occur and the logical decisions .

which should be made when the student uses the
program. However, unlike a programming language,
in which statements are considered to be simply a
sequence of program steps, the TICS system trans -
forms the author's ongoing input into a data base
of fairly general structure, which is called the
"dynamic data base". The predefined structural
form of the data baie is a direct reflection of
the system's conceptual model for a Tutorial,
which is described in some detail in a later sec-
tion.

In addition to providing a reasonably natural
language to the author for the creation of a Tutor-
ial and for reviewing its content, logic and struc-
ture, the system assumes the burden of managerial
tasks, such as numbering items, recording inter-
dependencies among items, and keeping track of
structural incompleteness. The system also in-
cludes mechanisms to convert the author's

description of a Tutorial into a concise form for
student use on one or more "target" machines, not
necessarily the same type of'computer on which
the TICS author-system itself resides.

The Overall System

TICS is implemented at M.I.T. as-a subsystem
in the Multics5 time- sharing system. Figure 1
diagrams-some aspects of its organization and in-
put=output_modet. Within the author system, each
Tutorial-inprocess is erbodied in one "dynamic-
data-baset,--resident in Multics storage. The au-
thor can work on his description of a tutorial
through an-on=line terminal-or-via off-line-media
(e.g.,_cardt-,Trinter). He can allOw.a."tey out"
access to-- others who then-can_ute,_but_not alter,
-the peogeam,:while it js-still being developed and
even .if= it contains structural- errors! Any numbee
of-authors May.-work simultaneOutly, each on.his or
'her own- tutorial: An- author- may-work,-on as many
-differeht,tutoria as he dhobses-and, conversely,
it can be arranged that any riUmbee-of_aUthoes can
work on-one tutorial.

When a- Tutorial is thought to be finithed,

fal:arolg= IgiCOMPIslaiO1411,tliTW:ncpallIlToMp res-
siOn. That process comprises the various steps
0 T5ideringthe data base, searching_for structur-
al errors, extracting only thote elements which are
needed for the-execution-time description of-the
Tutorial, and-formatting-them into a highly coded,
comprested 'form. This is used in the delivery
systeM, also-implemented on_Multics, in conjunction
with a driver program. (Driver programs are, also
being written in I6M/PL1 and for a PDP 11/40
system.)

The:Structure of a TICS Tutorial

We regard the structure of a Tutorial as be-
ing repretehtable by a collection of nodes, inter-
connected by arbitrary numbers of brancnes. Each
node can contain a small interaction, ideally a
tiny conceptual unit in the author's plan. One
node in a program has the initial attribute and
acts as the starting point. Any number of nodet
may be points at which the Tutorial ends. Gener-
ally, branches are specified explicitly, although
conditionally (e.g.: if such and such" is true,
then go° node "such and such"). In addition, for
certain types of nodes, or clusters of nodes, a
branch out need not be explicitly identified but
can be a return to the point where the branch into
the cluster originated.

Assuming that the allowable contents of a node
are adequate, these simple structural concepts al-
low a Tutorial to be very general from a purely
structural point of view. Moreover, there are
three aistinct and important advantages in the node/
branch concepts and the associated multi-level
address space defined within each Tutorial:
1) It provides a convenient structural form for
the dynamit data base, which in turn allows the pro-
vision of author commands which are both convenient
and efficient in maintaining, manipulating, and in-
vestigating that data base. 2) For the author,

the nodes might CompriseintelleCtUally
ful-units. Also, since they are readily distin-
guishable and clearly delineated locations in'the
overall structure, the nodes constitute a refer-
ence-basis by which-tne author (or a later modi-
fier of the program) can -move around within the
already existing description. 3) Implementation
of the target (delivery) system for student use
is conceptually simpler with the nodal concept,
and the inherentideMarcation lines in the final
prograth description provide an oppofaiiity for
efficient utiliiaticin of limited core storage in
a special purpose; multi-user, time-sharing-stu-
dent system.

It is of equal importance to note that-the
nodal structure is-not selected becaute_ of any
presumed-advantage 117holds-ai_alonnat for=pre
sentation-to the-studeht. Indeed, :althoOgh%an
obviously "page-by-page" presentation can'be-writ=
ten, such great-variations in the -contents -.of
noCes_aeelpOssibleihat studentt-Will -ncit_geneeal-
ly-ditcern the_nadd,boundariei even if they-ire
aware of the Underlying nodal structure of the
programs.

For TUtorial ptograms, we may envision nodes
as havilig a specific internal structural pattern

(which need not-6e filled) as indjcated schemati-
cally in_Figure 2. Within any one node there may
be 1) execution-of called subroutines, 2) out-
puts to the student, 3) acceptance of a response
from-the student (if One was anticipated), 4)
analysis (mapping) of the response with respect to
a list of anticipated responses, and 5) testing
of "condition statements" which, if true, cause
associated sequences of actions to,be carried out.
The conditions to be tested can relate to the stu-
dent's response in the current node, to responses
in other-nodes, and to values of variables. The
action sequences can include calling subroutines,
printing statements, writing entries in a report
file, doing mathematical operations on arithmetic
variables, executing_"return" type nodes or node
clusters, printing hints (and getting other re-
sponses), and (sooner or later) branching to
another node.

In addition to the description for those con-
tents, which specify what the program should do
when the student is using it, each node may have
a number of additional items associated with it,
while the author is working on the program. These
include a name, a number, a documentation comment,
a self-reminder author message, a system-maintained
set of warning and error messages relating to
changes made in interdependent items, a system-
maintained list of all items in the node on which
other items depend, optional attribute specifica-
tions which relate to the. interpretation of the
student's response, and one or more keyword phras-
es. Using .a subset of the node-keyword pairs
(which is then included in the student's version of
the program), the teacher can identify those points
in a Tutorial to which a student may arbitrarily
skip, and at the same time provide the "Map" for
the student to appreciate what those points are
about.

N
on

-a
ut

ho
r

on
-

lin
e

co
ns

ol
e

4
S

IM
-T

IC
S

(t
ry

 o
nl

y
m

od
e)

O
V

E
R

A
LL

 S
T

R
U

C
T

U
R

E
 O

F
 T

H
E

 T
IC

S
S

Y
S

T
E

M

r-
D

yn
am

ic
D

at
a

B
as

e

M
O

S
T

T
IC

S
*-

C
O

M
M

A
N

D
S

4.
4+

T
he

sa
ur

us
/

E
nc

yc
lo

pe
di

a

T
IC

S
 A

U
T

H
O

R

S
IM

U
LA

T
E

LA
N

G
U

A
G

E

C
O

M
P

R
E

S
S

I

pu
nc

he
d

ca
rd

s

on
-

lin
e

co
ns

ol
e

H
H

ig
h

S
pe

ed
pr

in
te

r
'A

ut
ho

r

IN
T

E
R

M
E

D
IA

T
E

 D
A

T
A

 B
A

S
E

,

(M
U

LT
IC

S
 T

A
R

G
E

T
 D

A
T

A
 B

A
S

E
)

or
de

re
d,

 c
od

ed
 fo

rm
at

;
on

ly
 In

fo
rm

at
io

n
ne

ce
ss

ar
y

fo
r

ex
ec

ut
io

n

L(
irr

an
sl

at
el

If
ne

ce
ss

ar
y)

4

re
co

de
d

to
 m

at
ch

ta
rg

et
 m

ac
hi

ne
 a

nd
tr

an
sf

er
 m

ed
iu

m

D
el

iv
er

y
S

ys
te

m

I

F
ig

ur
e

I

B
R

A
N

C
H

-
IN O

U
T

P
U

T
 'T

O
 S

T
U

D
E

N
T

G
E

T
 R

E
S

P
O

N
S

E

B
R

A
N

C
H

-I
N

.

A
N

A
LY

Z
E

 A
N

D
M

A
P

' R
E

S
P

O
N

S
E

C
H

E
C

K
C
O
N
D
I
T
I
O
N
A
L
S
;
,

IF
 S

A
T

IS
F

IE
D

,,
D
O

A
C

T
IO

N
S

E
Q

U
E

 N
 C

 E
 S

.

G
O

N
O

IT
 IO

N
T

R
U

E

C
O

N
D

IT
IO

N
!

T
R

U
E

 P

IN
T

E
R

R
U

P
T

IV
E

R
E

Q
U

E
S

T
 ?

C
O

N
D

IT
IO

N
:

T
R

U
E

'?

.4
_LO

O
K

 U
P

 IN
T

H
E

S
A

U
R

U
S

 A
N

D
P

R
IN

T
 O

U
T

w
R

 IT
 E

' M
E

S
S

A
G

E
vo

n
IN

S
T

R
U

C
T

O
R

oo
l()

 A
N

O
T

H
E

R
N

O
D

E

tO
 A

R
IT

H
M

E
T

IC

B
R

A
N

C
H

 -
O

U
T

k
i
i
.
T
E
R
N
A

L

T
R
A
N
S
F
E
R
,

A
N
D

R
E
T
U
R
N
(

.
F
l
o

'+
00

 T
O

I
IL I

A
N

O
T

H
E

R
.1

N
O

D
E

B
R

A
N

C
H

 -
O

U
T -4

11
,

(
I
N
T
E
R
N
A
L

T
R
A
N
S
F
E
R

A
N
D

R
E
T
U
R
N
)

-
-
F
4
.
1

i

[7
05

79
A

N
O

T
H

E
R

N
O

D
E

I

B
R

A
N

C
H

-
O

U
T

tA
LL

 S
U

B
R

O
U

T
IN

E

D
E

]
.R

E
T

U
R

N
"

N
O

E
X

E
C

U
T

E
 '

A

D
E

F
A

U
LT

, N
O

G
E

T
, R

E
S

P
O

N
S

E
 IN

.
-O

U
T

M
U

LT
IP

LE
 -

C
H

O
IC

E
 M

O
D

E

(+
),

T
hs

se
 a

rk
 s

ca
m

p
es

, o
r

ac
tio

ns
;'

se
qu

en
ce

s
ca

n
co

nt
ai

n
an

y
nu

rii
os

i e
le

ct
io

ns
.

N
O

, S
ub

ro
ut

in
e

ca
lls

 m
ay

 b
e

In
se

rt
ed

 h
er

e
as

 w
el

l a
s

In
ac

tio
n

se
qu

en
ce

s

S
C

H
E

M
A

T
IC

 D
IA

G
R

A
M

 O
F

 T
H

E
 IN

T
E

R
N

A
L

S
T

R
U

C
T

U
R

E
O

F
 A

 N
O

D
E

.

F
ig

ur
e

2

___A-
Theee are, additionally, implicit items in

the dettription of every node because of certain
operational conventions which are followed when
the Tutorial is being used: 1) if a response
doet-hoi-eesult in a hint or a branch-out, the
system-defaults to a multiple- choice mooe, in-ef-
fect asking the student to select among the
responses anticipated by the author. 2) If a
hint is-given, the associated statement is checked
off, so.that the same hint is not given again
aUvertently. It may be noted that these-conven-.
tiont-eliminate the possibility oflooping"-pi%
of adeadEend occurring within a node, prtividing
that -at least one anticipated respohse (or an al-
wayt true conditional) necettarily, leads to a
beanchout.-' This conaition is readily dedked
and-IS'ManitOred by the system. Another implicit
item in thejutorial is the optional recording of
the4listoey of the student's -bath, including the
full ARA of his responses. Thete data May_be_ute-
ful -to-the'author or -to the instructor of the re-

lated-COurSe, if'the use of the-T4torial it forthal-
ized._

There are also three typet of global items
associated with each Tutorial which apoly through-
out, Tether than to a specific node: 1,) A data
base for author-specified numerical scalar, numer;-
icaarrayi and character:variables, and for a
number-of system-maintained variables, which may
be pre=initialized or derived from student input,
included in text output, manipulated by arithmetic
(and-character) operations and subroutines, and
used_ n-making decisions. 2) An organized file
of textual information, called a thesaurus/encyclo-
pedia. *Words and phrases can be linked to one a-
nother-in the Sense of a thesaurus and associated
withdescriptive text in the sense of a dictionary
or encyclopedia. In use, the student can access
the information from any point in the tutorial
through the use of "interruptive" "requests.
3) There are seven typet of interruptive requests
with which the'student can change or temporarily
interrupt the flow. Three of tnese require no
action by the author: the student can back up
to a point where he gave a response previously;
send a message to whomever is in charge of the
use of the tutorial; or stop the session, with the
option Of continuing at a later time. Three more
requests are always implicitly available, but are
useful only if the teacner supplies appropriate
data. These allow the student to search through
and look up items in the thesaurus/encyclopedias;
search-the keYWord phrase list; and jump to points
identified in the keyword list. In addition to
these, -the teacher may specify subroutines to be
made available and their names may then be used
as interruptive requests, with or without student-
supplied parameters.

Authoring a Tutorial

certain
author is always considered to be a
node in the Tutorial, the working nooe.

The

The working node may be relocated to any noae by the
use of a simple commano, and the consequent ease of
moving the site of operation among the nodes helps
to make the description of a non-linear Tutorial a

-natural proceis. With other commands, the author
Can create specific items within the Tutorial,
generally at his working node. The elements of a
node may be created in the order in which they will
be executed or in any other order that the author
finds natural. Since any one statement may call;
either explicitly or implicitly, for the creation
of a number of new items in the program, the system
informs the author of the specific entries made in
the dynamic data bate and of the unique identifier
assigned to each item, which may be, used thereaft-
er to refer to the item without repeating its com-
plete specifications. The syttem gives warnings
and may seek verification of possibly- unexpected
creations (e.g.,_ the implied creation.of a new var-
iable-or of-ah-etidiOated response in another node) -

and -input statements are chedked for consistency

-with:the-existing data base "as well as for Ian=
jilage Syntax._ Whenan eredr.ocalet,-a descriptive
message is Printed, and_ihe-author may_ switch to
a general purOoSe editor to-fix the statement;

The same editor is called at the-author'S
request to -alter anyprevioUSly-specified textual
entry in the progeam. Other-modifications to exist-
ing entries may involve deletions, rearranging the
orOer of things, changes in the logical structure,
or substitution of one item for another and appro-
priate commands are therefore provided.

"Shorthand" features are provided to give the
languade addeo convenience. An-author may define
an input shorthand for commandt or for text which
he uses often, and previously specified text may
be used, by reference, as input in creating new
entries. The author can also control the verbosity
of the computer feedback and, if he chooses, switch
to a block input mode to vary his.pattern of inter-
action with the Moreover, all facilities
in the system except those which obviously require
the author's live presence (such as simulation),
can be used in an off-line, card-input mode.

To help the author keep track of the inter-
relationships among items in the tutorial, a cross
reference table is maintained for each node. These
tables are available to the author and are also
monitored automatically to determine what effect
Modifications have on items eltewhere in the Tutor-
ial; when an item,is altered, an appropriate warn-
ing entry is made in any affedted node(s). If an
item is deleted from the program, such that some
other item is out in error, a non-deletable error
entry is made in any node(s) containing the erro-
neous item(s), and the deleted entry is actually
saved in "ghost-like" form, so that it may to rein-
stated, if desired. Such error entries can be re-
moved only by correcting the erroneous conditions.

The ease with which the original author and
subsequent contributors can refine a Tutorial de-
pends greatly on their being able to inspect and
review its contents: The TICS system therefore pro-
vides a variety of tools for viewing the structure
and the content of a Tutorial, in coarse or fine
grain, on the author's console or via a remote high-
speed printer, in print or graphical form. Another
set of comnands is provided for focusing on the

r

logical-structure of the Tutorial;_that is, for
looking at possible paths through the node/branch
structure. One such command is the tree command
which-allows the author to view the branching
structure starting ,or ending ate given node. A
trace command "plays through" the outputs, student
responseS-, and conditional choices involved in a
path through a set of nodes. Another command
yields_etiock diagram of the internal logic of a
single -node.

An important part of the authoring process is
for the, author to "see how -it runt"; that is, to
execute-the Tutorial as a student. For this pur-
pose, the system includes a mode of operation in-
tendediteSimulate the execution of a prOgram_at
it appear -to -the student, but whith works On

''the-author's dYhamic data_base,.which-may be-ttruc-
"turally'incomPlete and erroneous: -(Such Condi-
4ons-are detected during simulation-and-broUght
toNtheadthoe's :attention.) Theel are, moreover,
tvie:Modetl-if simulation: a) StUdent_(or "deMo")
mode; for which the target system interaction is
emulated as precisely as Ogisible and which can pro-
vide actual user feed-back during the entire pro-
cess of writing the tutorial. b) Teacher (or
"non-deMo") mode, in which the system not only pre-
sents the described interaction, but also identifies
each node-as it is entered through the branching
sequences, prints the error, warning and reminder
messages which nappen to be attached, and makes
additiohal comments about incomplete states. In
addition,-during the course of the simulation, the
author-then has available a number of commands for
the purpose of examining and setting values for
variables, and for controlling the simulation. He
can set detailed "stop-points" within nodes, which
will cause-a halt in the simulation and allow exam-
ination of the state of affairs at the instant.
Throughout, the author may use any of the standard
TICS requests to create, display, examine or alter
any part of the Tutorial description.

Anticipated Responses and Response Analysis

For the interaction format described earlier
which hat the flavor of a "conversation" between
the computer and the student, and especially if
the student responses are the prime determinant of
the program flow, specification of anticipated stu-
dent responses are-a central aspect of the author-
ing process. If, in addition, free format student
responses are desired,-rather than (say) multiple-
choice selection, response analysis (or interpreta-
tion) with respect to the anticipated responses is
a critical function of the delivery system.

The generalized fesponse analysis problemLis
made more,ixactable by the structure of the Tutor-
ial which allows each individual analysis to be
made in a very local context, and reduces the prob-
lem from "what does it mean?" to "does it mean the
same as one of the anticipated responses". It is
worth noting, as a related point, that there is not
much advantage gained by a response analyter which

"understands" responses for which the rest of the
Tutorial is not prepared. In a real sense, there-
fore; an author's success is more dependent on the

degree to which he becomes not only aware of but
also responsive to the meaningful range of student
responses in each node, during the dynamic process
of design and trial of a Tutorial.

While trying_ not to involve the system or the
author deeply in questions of languages structure _

or analysis, requiring certain simple specifica-
tions to indicate alternatives for the response
comparison procets hat been useful in allowing
reasonably natural student responses. Thus, a node
may give the student a multiple- choice presentation
directly or look for efeeerformat response; or, it
may -seek a.reiponse which is actually a list of
responses. It may seekno response, or re- inter-
pret a,previousene with respect to-a-different set
of antidipated.retpontes. Each anticipated response
carries its-own instructions for the response dom7
paeiten routines; these may indicate, for-eiaMple,
that the.expected_eisponse it a nUmbee between-spec-
ified limits,- -or an algebraic- expression or equation,
both of which-eeqUire a mapping very different than
for text. Text responses may be finely detailed in
terms of pieces which should Or should not be in-
cluded, in terms of listing synonomout or alterna-
tive-formt, in terms of the exactness of match re-
quired, and in other respects. Additional alterna-
tives regardirig response analysis are implicit in
the author's option of using subroutines to act
directly on the input text.

Acknowledgments

We would like to thank a number of persons
who have contributed to the design and implementa-
tion of the system. Dr. John Brackett, Dr. Alan
Campagna, John P. Linderman, David Pettijohn, Seth
Cohen, Lee Scheffler, Paul Leach, Richard Goldhor,
Geoffrey Bunza, and Gary Stahl. This work was spon-
sored by the National Science Foundation, Office of
Computing Activities.

References

1. Swets, J. and Feurzeig, W., "Computer-Aided In-
struction", Science 150 (1965); also see Feur-
zeig, W., Computer Systems for Teaching Complex
Concepts, Report No. 1742, Bolt, Beranek and New-
man, Cambridge, Mass. (1969).

2. Feingold, S. L.: IPLANIT - A Flexible Language
Designed for Computer-Human Interaction", Proc.
AFIPS 1967 Fall Joint Computer Conf. 31,
pp.545-552, Thompson Book Co.,.Washington.

3. IBM Corp. Coursewriter III for System/360, Ver-
sion 2, Application Description Manual.

No. GH20-0587-1 (3rd ed., August 1969).

4. Computer-B-led Education Research Laboratory.
Tutor User , Manual. University of Illinois,
Urbana, Ju-ly 1971.

5. F. J. Corbato, J. H. Saltzer, C. T. Klingen,
Multics--the First Seven Years, AFIPS Proceed-
ings, 40, p. 571, Spring Joint Computer Confer-
ence (1972); E. I. Organick, the Multics System--
an Examination of its Structure, M.I.T. Press
(1972).

